Characterizing the Branch Misprediction Penalty

Stijn Eyerman’

James E. Smith?

Lieven Eeckhout'

TELIS, Ghent University, Belgium
*ECE, University of Wisconsin—-Madison, USA
{seyerman, leeckhou}@elis.UGent.be, jes@ece.wisc.edu

Abstract

Despite years of study, branch mispredictions remain
as a significant performance impediment in pipelined su-
perscalar processors. In general, the branch mispredic-
tion penalty can be substantially larger than the frontend
pipeline length (which is often equated with the mispredic-
tion penalty). We identify and quantify five contributors to
the branch misprediction penalty: (i) the frontend pipeline
length, (ii) the number of instructions since the last miss
event (branch misprediction, I-cache miss, long D-cache
miss)—this is related to the burstiness of miss events, (iii)
the inherent ILP of the program, (iv) the functional unit la-
tencies, and (v) the number of short (L1) D-cache misses.
The characterizations done in this paper are driven by ‘in-
terval analysis’, an analytical approach that models super-
scalar processor performance as a sequence of inter-miss
intervals.

1 Introduction

Branch mispredictions are a significant impediment to
performance, especially in deeply pipelined processors.
The total performance penalty due to branch mispredictions
is the product of the branch misprediction rate, i.e., the frac-
tion of mispredicted branches, and the branch misprediction
penalty, i.e., the number of lost execution cycles per mis-
predicted branch. The penalty for a branch misprediction
can be significantly larger than the frontend pipeline length
(i.e., the pipeline refill time). Figure 1 shows the average
branch misprediction penalty for the SPEC CPU2000 inte-
ger benchmarks—details regarding the experimental setup
are given later. In these experiments the front-end pipeline
is set at five pipeline stages. As the graph indicates, the
branch misprediction penalty (measured in clock cycles) is
always larger than the time it takes to traverse the front-
end pipeline length. For some benchmarks the penalty ob-
served on a branch misprediction is several times the front-
end pipeline length.

40

35
30
25 1
20

branch misprediction penalty
(clock cycles)

k]
€

vpr

o a 9]
o © 3]
5} o =)

bzip2
crafty
gzip
parser
perlbmk
twolf
vortex

Figure 1. The branch misprediction penalty
for the SPEC CPU2000 integer benchmarks.

There are a number of contributors to the branch mis-
prediction penalty, of which the pipeline re-fill time is only
one. In this paper, we study the contributors to the branch
misprediction penalty in detail and analyze them in terms
of program characteristics. We show that the performance
penalty per branch misprediction is a function of:

1. The frontend pipeline length;

2. The number of dynamic instructions since the last
significant miss event (branch misprediction, I-cache
miss, long data cache miss (e.g., an L2 miss))—this is
a function of the program’s locality and predictability;

3. The average critical dependence path, i.e., for a given
instruction window size, the length of the average in-
struction dependence chain. The length of the critical
path can be further divided into three components:

(a) The inherent critical path with single cycle laten-
cies; this is the count of instructions along the
critical path.

(b) The instruction latencies; these amplify the crit-
ical path effect, and are a function of the pro-
gram’s instruction mix, i.e., the more long la-
tency instructions on the critical path, the longer
the critical path, as measured in clock cycles.

(c) The number of short (L1) data cache misses;
these further amplify the critical path length. In
our analysis, L1 data cache misses are modeled
separately from the other types of miss events
because, in general, their effect on performance
is different. With adequate load/store queuing,
L1 data cache miss latencies can be success-
fully overlapped with other instructions, unlike
the other types of miss events.

This paper also demonstrates an application of inferval
analysis — a general technique for modeling superscalar pro-
cessors. In interval analysis, superscalar processor perfor-
mance is viewed as a sequence of inter-miss intervals. The
misses that define the intervals are branch mispredictions,
(L1 and L2) I-cache misses and long (L2) D-cache misses.
Interval analysis allows sections of dynamic program exe-
cution to be studied more-or-less in isolation; we will use it
to isolate mispredicted branch behavior.

2 Experimental setup
2.1 Processor model

We consider superscalar processors as illustrated in Fig-
ure 2. This is a more-or-less generic processor, similar
in style to many processors in use today. The processor,
as drawn, incorporates a number of design parameters and
program-related characteristics that affect the overall per-
formance. A key parameter, often referred to as the ”width”
of the superscalar processor, is denoted as / in Figure 2. The
width defines the number of instructions that each pipeline
stage can process per cycle, as well as the rate at which in-
struction issue, execution, and commit can be sustained.

At the left side of the figure is the instruction delivery
subsystem which combines elements of instruction fetch,
instruction buffering, and branch prediction. It is impor-
tant that the instruction delivery subsystem provides a sus-
tained flow of instructions that matches the capacity of the
rest of the processor to issue, execute, and commit instruc-
tions. Because of the variability in dynamic basic block
sizes (distances between branches), the peak fetch width,
parameter F in Figure 2, will typically be larger than the
pipeline width, with an instruction fetch buffer to moderate
the flow into the pipeline.

After instructions are fetched, they are decoded, their
registers are renamed, and they are dispatched into an in-
struction issue buffer and a reorder buffer (ROB). In a mod-
ern superscalar processor, the instruction issue buffer is sep-
arate from the ROB. The role of the ROB is to maintain the
architected instruction ordering so that the correct process
state can be restored in the event of a trap or a branch mis-
prediction.

benchmark | input simulation point
bzip2 program 10
crafty ref 1
eon rushmeier 19
gap ref 2,095
gee 166 100
gzip graphic 4
mcf ref 317
parser ref 17
perlbmk makerand 2
twolf ref 32
vortex ref2 58
vpr route 72

Table 1. The benchmarks used in this paper
along with their inputs and simulation points.

In this study, we assume that the superscalar processor
is balanced with respect to its given width and the pro-
grams that will be run on it. This means that the issue buffer
and ROB sizes are adequate to achieve the maximum issue
rate in the absence of significant miss events such as branch
mispredictions, I-cache misses and long (L.2) D-cache miss
events. Short (L1) D-cache miss events are treated differ-
ently since L1 D-cache misses can be hidden through the
out-of-order execution of independent instructions [2]. Ad-
equate load/store buffering and a sufficiently large instruc-
tion window can hide most of the L.1 D-cache miss penalties
with almost no performance loss. This requires the ROB,
the issue buffer and related structures to be sized appropri-
ately in a balanced design.

When significant miss events (such as branch mispredic-
tions, [-cache misses and long D-cache misses) are consid-
ered, the maximum issue rate can no longer be achieved all
(or most) of the time, but intuitively, balance means that
the maximum issue rate can still be achieved at least some
of the time'. The assumption of a balanced design also
assumes adequate fetch resources to provide sustained in-
struction delivery at the rate equal to the issue width.

2.2 Simulation infrastructure and method

All simulation results are measured using a modified
version of SimpleScalar/Alpha v3.0. We use all the inte-
ger SPEC CPU2000 benchmarks; we do not consider the
floating-point benchmarks because these benchmarks suf-
fer less from branch mispredictions. In order to limit the
total simulation time in our experiments we use the (single)
100M simulation points provided by SimPoint [5]. Table 1
shows the benchmarks and their reference input. The bi-
naries are taken from the SimpleScalar website?>. The su-
perscalar processor model that we assume in this study is
tabulated in Table 2. All results presented in this paper are
based on this processor model unless mentioned otherwise.

Note that we do not provide an exact number for what ‘some of the
time’ means. This is up to the designer, but is probably at least 5 percent.
2http://www.simplescalar.com

Physical

Register [«
File(s) # and type of units
entries unit latencies
Branch i":é?;”vi'ri;" Exe_c. R
Predict algorithm Unit
mispredict
rate Fetch
buffer
| Exec. N
- Issue "1 unit d
l-cache »| Decode Pipeline —4
miss-rate | I D Pipeline depth D Buffer I
Exec.
entries ' g . » to
D Unit I-cache
L2 main
Load Q L1 Data Cache 'Zetz.fyy
entries Cache < N
Store Q dports | | -
vonvios [P merne _
entries
» Reorder Buffer (Window) i
W entries R
Figure 2. A superscalar processor.
ROB . 64 entries 4 This interval behavior is illustrated in Figure 3. The
processor width D =1=R =4wide R X X .
fetch width F 8 wide number of instructions committed per cycle (IPC) is shown
latencies load2§ycles, mul 3 cycles, div 20 cycles, arith/log 1 cycle on the Y axis and time (1n clock Cycles) is on the X axis.
L1 I-cache 8KB direct-mapped, 32-byte cache lines K . i o
L1 D-cache 16KB 4-way set-associative, 32-byte cache lines As illustrated in the figure, the effects of miss events divide
L2 cache unified, IMB 8-way set-associative, 128-byte cache lines

12 cycle access time

200 cycle access time

hybrid predictor consisting of 4K-entry meta, bimodal and
gshare predictors

5 stages

main memory
branch predictor

front-end pipeline

Table 2. Processor model assumed in our ex-
perimental setup.

3 Interval analysis

We will study the effects of branch mispredictions using
interval analysis, a method which gives insight into the in-
teractions in a superscalar processor without the detail of
tracking individual instructions. With interval analysis, ex-
ecution time is broken into discrete intervals by disruptive
miss events (such as cache misses and branch mispredic-
tions). Then, statistical processor and program behavior al-
lows us to characterize superscalar behavior for each inter-
val type.

The basis for the model is that a superscalar processor is
designed to stream instructions through its various pipelines
and functional units, and under optimal conditions, it sus-
tains a level of performance equal to its issue (or commit)
width. However, the smooth flow of instructions is often
disrupted by miss events such as cache misses and branch
mispredictions. When a miss event occurs, the issuing of
useful instructions eventually stops; there is then a period
when no useful instructions are issued until the miss event
is resolved and instructions can once again begin flowing.

execution time into intervals. Intervals begin and end at the
points where instructions just begin issuing and committing
following recovery from the preceding miss event. That is,
the interval includes the time period where no instructions
are issued following a particular miss event. We define in-
terval execution time as the number of clock cycles to exe-
cute an interval and we define interval length as the number
of (correct-path) instructions executed in the interval.

By dividing execution time into intervals, we can then
analyze the performance behavior of the intervals individu-
ally. In particular, we can, based on the type of interval (the
miss event that terminates it), describe and evaluate the key
performance characteristics.

An incomplete version of interval analysis for studying
instruction delivery was proposed by Michaud et al. [3, 4].
A more complete method for interval analysis, extended
to other types of miss events, was proposed by Taha and
Wills [6]; in that work, penalties due to miss events were
generated experimentally. Karkhanis and Smith [2] propose
analytical models for various types of miss event behavior
and validate them experimentally. However, their models
are applied in a dual approach to interval analysis, which we
call gap analysis here. Gap analysis assumes that steady-
state performance is sustained most of the time. When a
miss event occurs, performance falls to zero; when the miss
is resolved, performance ramps up again to steady-state.
The result is a gap in the steady-state performance. Inter-
val analysis and gap analysis might appear to be equivalent.
However, there is one subtle but important difference. In
cases where miss events occur close together (in bursts),

branch
mispredicts

i-cache)
miss long d-cache miss

\ /[L/ .

4_’4—’4—*—’| time

interval 0

interval 1 interval 2

interval 3

Figure 3. Basic idea of interval analysis: performance can be analyzed by dividing time into intervals

between miss events.

mispredicted miss-
branch enters speculated
window instructions

issue ramps up

instructions\
enter

window

re-fill pipeline

/

misprediction
detected
(flush pipeline)

pipeline
length

‘4 >
branch misprediction interval
Figure 4. Interval behavior for a branch mis-

prediction.

steady-state performance is never achieved. These situa-
tions are handled more naturally through interval analysis.

3.1 Branch misprediction intervals

Figure 4 shows the timing for a branch misprediction in-
terval. This graph plots the number of instructions issued
(Y-dimension) versus time (X-dimension); in a sense, this is
average or typical behavior and the plot has been smoothed
for clarity. At the beginning of the interval, instructions be-
gin to fill the window and instruction issue ramps up. Then,
at some point, the mispredicted branch enters the window.
At that point, the window begins to drain good instructions
(i.e., those that will eventually commit). Here, the empha-
sis is on good instructions, because miss-speculated instruc-
tions following the mispredicted branch will continue fill-
ing the window, but they will not contribute to the issuing
of good instructions. Nor, generally speaking, will they in-
hibit the issuing of good instructions if it is assumed that the
oldest ready instructions are allowed to issue first.

Eventually, the mispredicted branch is discovered. An
important observation is that this very often coincides with
the end of the window drain; i.e., the mispredicted branch
instruction is one of the very last good instructions to be
executed. This observation is supported by the data in Fig-
ure 5, collected for the SPEC benchmarks. This graph
shows the difference between the window drain time and the
branch resolution time measured in number of cycles, given
as a percentage of the number of branch mispredictions. We

T

90%
80%
70%
60% -
50%
40% 1
30% -
20%
10%
0%

percentage

bzip2
crafty
eon
gap
gce
9zip
mcf
parser
perlbmk
twolf
vortex
vpr

Figure 5. Difference in number of cycles be-
tween window drain time and branch resolu-
tion time.

observe that between 70% and 95% of the time, the mis-
predicted branch instruction is issued during the same cy-
cle as the issue buffer becomes drained. The only excep-
tion is benchmark vpr where most of the time is spent in
a loop with a recurrent, loop-carried dependence for which
the loop-terminating branch is independent of the long de-
pendence chain.

When the mispredicted branch is resolved, the pipeline
is flushed and is re-filled with instructions from the correct
path. During this re-fill time, there is a zero-issue region
where no instructions issue, and, given our above observa-
tion, the zero-region is approximately equal to the time it
takes to re-fill the front-end pipeline (i.e., a number of clock
cycles equal to the front-end pipeline length.)

For a balanced pipeline, the timing analysis for a branch
misprediction interval is shown in Figure 6. Here, the total
interval time has three sub-intervals (A, B, and C in the fig-
ure). The time required for the first sub-interval A is simply
n/I, the total number of instructions in the interval (n) di-
vided by the issue width (/); this is the time from the begin-
ning of the interval until the mispredicted branch is placed
(dispatched) into the window.

The second sub-interval B is the time it takes for the mis-
prediction to be discovered after the branch is dispatched
into the window. If we assume that the branch is the last
good instruction to be issued and executed, then the time for
the second sub-interval is approximately equal to the time it
takes to empty (drain) the window of good instructions be-

D=
window
drain
’ time R

< P »€ P

A=n/l B= C=
branch pipeline
resolution length
time
Figure 6. Timing for an interval ending in a
mispredicted branch; assumes a balanced
processor design.

ginning at the time the mispredicted branch enters the win-
dow, i.e., B = D. The third sub-interval C is the pipeline fill
time and is equal to the pipeline length.

Defining the branch misprediction penalty. A key ob-
servation regarding the first sub-interval, A, is that in a bal-
anced processor, instructions can always be placed into the
window at a sustained rate of D instructions per cycle. Even
though instructions do not initially issue at the (maximum)
issue rate I, as the window eventually becomes full, the is-
sue rate will rise to /, so the window is emptied at the same
rate it is being filled, and balance will be achieved. The
point is that in a balanced processor, dispatch will never (or
very rarely) block due to a full window in the absence of
miss events. It then follows that the branch misprediction
penalty is the difference between the time the mispredicted
branch first enters the window and the time the first correct-
path instruction enters the window following discovery of
the misprediction, i.e., B+C in terms of Figure 6.

Contributors to the branch misprediction penalty. If
the number of instructions preceding the mispredicted
branch is sufficiently large, then the penalty will be nearly
a full window drain time (which, as we shall see, can be
longer than the pipeline fill time) plus the pipeline fill time.
That is, the penalty can be more than twice the pipeline fill
time. On the other hand, if the interval preceding the mis-
predicted branch is very short, then the penalty is closer to
a single pipeline fill time. This means that when there is
a burst of branch mispredictions, the branch misprediction
penalty will be shorter than for isolated branch mispredic-
tions.

A second observation is that the branch misprediction
penalty is a function of the program’s average critical de-
pendence path length (for a given window size). This is an
important program characteristic. In general, we are inter-

ested in not only the critical path that leads to a mispredicted
branch, but also the critical path length averaged over all in-
struction windows [4]. A program’s instruction level paral-
lelism (ILP) is inversely related to its average critical path
length; i.e., the longer the average critical path, the less the
ILP.

The drain time is influenced by the average critical path
length in two ways. First, a program with a long aver-
age critical path (low ILP) requires more instructions in the
ROB to sustain the maximum issue width during steady-
state. As such, when a mispredicted branch enters the win-
dow, there will be more instructions buffered in the window
for a long critical path program than for a short critical path
program. Obviously, draining a large number of instruc-
tions from the window takes longer than draining a small
number of instructions. Then, the second drain time effect
is that a program with a longer average critical path will
drain the window at a slower rate, thereby increasing the
branch misprediction penalty even further. This, and other,
related effects are discussed in more detail in section 5.

3.2 Interactions with other miss events

Branch mispredictions do not occur in isolation; they in-
teract with other miss events. The penalty for a particular
branch misprediction often depends on the preceding miss
event (and, conversely, can affect the next miss event).

From an interval analysis perspective, which focuses on
the issuing of good instructions, the interaction between
branch mispredictions and I-cache misses (or consecutive
branch mispredictions) is limited because the penalties do
not overlap. That is, branch mispredictions and I-cache
misses serially disrupt the flow of good instructions so their
negative effects do not overlap. Consequently, the inter-
action between branch mispredictions and I-cache misses
is limited to the effect of the interval length that separates
them. In general, as discussed above, the longer the inter-
val preceding a branch misprediction, the larger the branch
misprediction penalty.

The interactions with D-cache misses are more complex.
As mentioned before, short D-cache misses are considered
as long latency unit instructions in a balanced superscalar
out-of-order processor design. Hence, we first focus on long
D-cache misses.

When a long data cache miss occurs, i.e., from the L2 to
main memory, the memory delay is typically quite large—
on the order of a hundred or more cycles. This delay can-
not be hidden, and the penalty for a long D-cache miss will
interact with, and can affect the observed branch mispre-
diction penalties. In earlier work [1] it was found that the
long miss penalty results predominantly from the following
sequence of events: the load blocks at the ROB head, the
ROB fills, dispatch stops due to the full ROB, and finally
issue ceases.

Load
enters
window

issue ramps
up to
steady state

steady state

Load

sues

Data returns

Mispredicted from memory Branch decided

branch enters
window

Issue window empty

Instructions \

enter window

time = n/l
Figure 7. A long D-cache miss followed by a mispredicted branch that depends on the miss data.

Now we consider the effect on branch misprediction
penalty when the mispredicted branch immediately follows
along D-cache miss. By ‘immediately’ we mean within the
W (window/ROB-size) instructions that follow the first long
D-cache miss; these instructions (including the branch) will
make it into the ROB before it blocks. If the branch is not in
the ROB when it fills and blocks dispatch, then the branch
penalty and the long D-cache miss penalties will serialize.
If the mispredicted branch does make it into the ROB, then
there are two cases to consider. In one case the long D-cache
miss feeds the mispredicted branch, i.e., the load miss reads
data on which the branch depends. In this case, the miss
penalties serialize. This is illustrated in Figure 7. This case
has an interval that ends with the mispredicted branch. If
the branch enters the window close to the time the load is-
sues, then the only extra latency is a pipeline fill time, which
is small compared with the memory latency. In the second
case, the mispredicted branch is not fed by the long D-cache
miss, and in this case the misprediction penalty is hidden
under the long D-cache miss penalty.

4 Critical path characterization

As observed earlier, the average critical dependence path
is a program characteristic that affects the branch mispre-
diction penalty. In this section, we will provide more detail
regarding this measure, including data for benchmark pro-
grams.

We are interested in the average critical path, as a func-
tion of the instruction window size. Here we use the term
window in the sense it was originally used [7], i.e., it is a
contiguous region of dynamic instructions, usually of some
fixed size, where the first (oldest) instruction in the window
is unexecuted. Other instructions in the window may or may
not be executed. In terms of a superscalar processor imple-
mentation, the instructions held in the ROB correspond to

of good insns
(except branch-
related)

\

‘pipelin::‘
fill

miss latency

instructions in the window. In contrast, the instructions in
the issue buffer are the subset that have not yet issued.

The critical path metric was suggested by Michaud et
al. [4]. First, for a given window of instructions, we use
the data dependence arcs to find the critical path of instruc-
tions; i.e., the longest sequence of dependent instructions.
For an overall program, we take a fixed window size and
‘slide’ it continuously over the dynamic instruction stream,
and determine the average critical path length over the pro-
gram. This can be done efficiently by computing the critical
path length incrementally while sliding over the dynamic
instruction stream. By doing so, the algorithm also com-
putes the critical path length simultaneously for a range of
window sizes; the algorithm is based on the fact that the
critical path length is always larger in a large window than
in a smaller window.

We define K(W,P) to be the average critical path length
for program P and window size W. If we assume all instruc-
tions have unit latency, then intuitively, the average rate at
which instructions can be issued and committed for pro-
gram P is ¢« = W/K(W, P). Hence, K(W,P) is a good
measure of inherent ILP in program P. This measure was
first proposed in [4], and we have found it to be a good one.

For the SPEC integer benchmarks, we have evaluated
K(W,P). The results are plotted in Figure 8 on a log-log
scale for unit execution latencies. As was observed in
Michaud er al. [4], these curves are a straight line (at least in
the region where practical superscalar processors are likely
to be built). Hence, there is a power law relationship be-
tween W and K(W,P); i.e., K(W, P) ~ o~ - W/8 3 > 1.
The values of « and 3 are program dependent. In Michaud
et al., it is assumed that § ~ 2; however, we observe that 3
takes on a range of values from 1.3 to 2.4. The value of « is
in the range 0.9 to 1.5 for our data, see Table 3. Generally
speaking, the higher the value of (3, the shorter the critical
path and the more ILP is present.

vpr perl | parser | twolf | gzip | gap crafty | vortex | eon bzip2 | mcf | gcc
a | 142 | 145 | 133 1.23 1.32 | 1.29 | 1.30 1.41 1.46 | 1.13 1.04 | 0.92
B | 1.32 | 1.37 | 148 1.49 1.51 | 1.55 | 1.60 1.69 1.70 | 1.76 1.85 | 2.40

Table 3. Power law estimate of K(W,P) as a function of « and 3; benchmarks are sorted by increasing

3.

5 1= = = 'bzip2
gap gce gzip
mcf —-—--parser ———-perlbmk

— — crafty eon

log2 (ILP)

log2 (window size)

Figure 8. The average critical path length
K(W,P) as a function of window size on a log-
log scale.

5 Quantifying the branch misprediction
penalty

We now quantify the branch misprediction penalty. We
first quantify the absolute branch misprediction penalty
and subsequently discuss the relative branch misprediction
penalty.

5.1 Absolute branch misprediction penalty

The absolute branch misprediction penalty is defined as
the number of cycles lost due to a mispredicted branch.
Referring to Figure 6, this is the branch resolution time
B plus the pipeline length C. The pipeline length is fixed,
and the branch resolution time determined by (i) the interval
length preceding the branch misprediction, which is corre-
lated with the burstiness of miss events, and (ii) the average
critical dependence path which is a function of the inherent
ILP in the program, the functional unit latencies, and the
short (L1) D-cache misses. We will now quantify these two
factors after which we present a stacked branch mispredic-
tion penalty model. For now, we limit ourselves to branch
misses that do not overlap with long D-cache misses; over-
lapping misses will be treated later.

5.1.1 Impact of interval length

We first study the impact of the interval length on the branch
misprediction penalty. As discussed in section 3.1 the
penalty tends to be smaller in case of bursty misprediction

branch resolution time
(2]

1 10 100 1000
interval length

Figure 9. Branch resolution time as a function

of interval length.

behavior. But, note that the length of a branch mispredic-
tion interval is determined by the position of the prior miss
event, regardless of the type. Hence, when we say ‘bursti-
ness’ we mean the collective burstiness of miss events, not
just branch mispredictions. Figure 9 quantifies the average
branch resolution time (averaged over all benchmarks) as a
function of interval length—we assume unit execution la-
tency in this graph.

This graph clearly shows that the branch misprediction
penalty increases for longer interval lengths. Bursty miss
behavior with shorter interval lengths on the other hand,
tends to yield shorter branch misprediction penalties. The
reason is that if the interval contains a small number of
instructions, the window contains a small number of in-
structions when the mispredicted branch enters the window,
making window drain time smaller.

5.1.2 Impact of average critical dependence path

The second factor in the branch misprediction penalty is the
average critical dependence path. We first assume unit ex-
ecution latencies—this is to capture the inherent program
ILP. Recall that a low-ILP program (one with a long av-
erage critical path length) is expected to fill the ROB with
more instructions than a high-ILP program. The more in-
structions in the ROB in conjunction with the low ILP dur-
ing window drain results in an overall longer drain time or
branch resolution time.

Figure 10 displays a scatter plot that shows the window
drain time on the Y axis as a function of the average criti-
cal path length on the X axis; again we assume unit latency
in this graph. Along the X axis, the low-ILP programs are

12
& bzip2
117 A Ocrafty
o 101 Aeon
5 X gap
£ 9 O X gcc
o 8 X * Ogzip
o O
© X - + mcf
o 74 ™
3 <& =parser
61 + * twolf
A
5 W vortex
A\pr
4 T T T T
2 4 6 8 10 12

critical path K(window size at start window drain)

Figure 10. Scatter plot showing window drain
time versus critical path length.

situated on the right hand side of the graph. The critical
path on the horizontal axis is measured using the K(W,P)
we described in section 4. The window size chosen for
computing the critical path length is the size at the time the
branch enters the window. The data shown in this graph are
for relatively long interval lengths in the range [90,110];
this is to exclude the effect of short interval lengths as dis-
cussed above. The benchmark perlbmk does not appear in
this graph because of the very high branch misprediction
rates for this benchmark which results in very short inter-
val lengths only — there are no interval lengths within the
range [90,110]. This graph clearly shows there is a strong
correlation between window drain time and inherent ILP.
For example, a program like vpr has very low ILP—the 3
value in the power law estimation of K(W,P) for vpr equals
1.3 which is the lowest (3 observed among the benchmarks,
see Table 3. As a result, window drain time is significantly
longer than for the other benchmarks. As mentioned before,
vpr spends most of its time in a loop with loop-carried de-
pendencies, i.e., the amount of ILP is limited by program
parallelism rather than machine parallelism. On the other
side of the spectrum we observe the following benchmarks:
eon, mcf, bzip2, vortex and gcc. These benchmarks show
the shortest average drain time (see the projected data points
on the vertical axis). This correlates very well with the high
(3 values reported in Table 3. These benchmarks are indeed
the benchmarks with the highest inherent ILP. The remain-
ing benchmarks show moderate average drain times; the 3
values for these benchmarks are around 1.5. The correlation
coefficient of the data shown in Figure 10 is 84.7% (71.8%
if we exclude vpr). We can thus conclude that there is in-
deed a strong correlation between the program’s inherent
ILP and the average drain time—benchmarks with low ILP
tend to have a large drain time, benchmarks with high ILP
tend to have a shorter drain time.

—o— bzip2
—B— crafty
—A—eon
—%—gap
—X%—gcc
—6—gzip
—+—mcf
—=— parser

branch resolution time

—=— perlbmk
—o— twolf
—— vortex

t T T T T : —A— \pr

1 1.2 1.4 1.6 1.8 2 2.2

average instruction execution latency

Figure 11. The impact of non-unit latency on
the branch resolution time.

Non-unit latencies. In the above experiments we as-
sumed unit latencies to quantify inherent ILP. However, the
branch misprediction penalty is also dependent on the func-
tional unit mix. To illustrate this, we now assume non-unit
execution latencies, i.e., we assume the execution latencies
given in Table 2 (multiply 3 cycles and divide 20 cycles) and
in addition we vary the L1 D-cache access latency from 1 to
4 cycles and measure the effect on the average branch res-
olution time and window drain time. The results are shown
in Figure 11 in which the branch resolution time is shown
as a function of the average instruction execution latency.
This graph clearly demonstrates that the branch mispredic-
tion penalty increases with increased instruction execution
latencies.

Short D-cache misses. Until now we assumed an ideal
L1 D-cache, i.e., every load from L1 is a hit. If a non-ideal
L1 D-cache is assumed, the loads that hit in the L2 cache
can be modeled as long latency instructions, with the exe-
cution latency being the access time to the L2 cache. When
modeling the L2 hits in this way, we obtain similar results
to those shown in Figure 11 (results are not explicitly given
here due to space constraints). In other words, the branch
misprediction penalty increases with increasing L2 cache
access latencies.

Similarly, we can compute the impact of the L1 D-cache
miss rate on the branch resolution time. Again, we obtain
similar results to Figure 11. As such, we conclude that
the branch resolution time increases with increasing L1 D-
cache miss rate.

5.1.3 Stacked branch misprediction penalty model

When all the components of the branch misprediction
penalty are put together we obtain the results given in Fig-
ure 12. This data is for a four-wide processor, and the
stacked branch misprediction penalty model breaks the to-
tal penalty into five components: (i) the front-end pipeline

W non-unit latency, short L1 D-cache misses
— [non-unit latency

I
S

@ unit latency, inherent ILP
O unit latency, four-wide issue drain
O front-end pipeline length

w
&

branch misprediction penalty
J e T SR
S o o o &

o

i

Ll

c o
S @
[} =)

bzip2
crafty
gce
gzip
mcf
parser
perlbmk
twolf
vortex
vpr

Figure 12. Stacked branch misprediction
penalty model.

fill time, (ii) the drain time, (iii) the penalty under unit la-
tency assumptions—this quantifies the inherent ILP when
draining the window, (iv) the additional penalty for non-
unit latency, and (v) the additional penalty for non-ideal L1
D-cache. Note that the top line of this graph is identical to
the top line in Figure 1. This graph shows that the com-
ponents vary widely among the benchmarks. For example,
for vpr the branch misprediction penalty increases signifi-
cantly due to its low inherent ILP; the low ILP results in the
window filling up which in its turn, results in a long drain
time. In terms of the non-unit latencies, the branch mis-
prediction penalty increases substantially for mcf due to its
very high L1 D-cache miss rate. Also for gcc, gzip, parser
and vpr, the branch misprediction penalty seems to increase
significantly due to L1 D-cache misses; the reason is that the
mispredicted branch is dependent on loads missing in the D-
cache. For the eon and perlbomk benchmarks on the other
hand, the branch misprediction penalty increases more from
non-unit latencies than from D-cache misses. This suggests
that there are no D-cache misses on the critical path leading
to the mispredicted branch for these benchmarks.

5.2 Relative branch misprediction penalty

The above sections discussed the absolute branch mis-
prediction penalty. Now we discuss the relative branch mis-
prediction penalty, which is defined as the absolute branch
misprediction penalty divided by the total time spent within
the interval that ends with a mispredition. In other words,
referring to Figure 6, we quantify the fraction of penalty
time B+C compared to the total interval execution time
A+B+C. Figure 13 quantifies the relative branch mispredic-
tion penalty as a function of interval length.

As seen from this graph, the relative penalty decreases
with increasing interval length. In fact, for small inter-
val lengths, most of the time is spent recovering from
the mispredicted branch. Because the absolute penalty is

100%

—e— unit latency

80% A —=&— non-unit latency

60% 1

40% -

20%

relative branch misprediction penalty

00/0

0 50 100 150 200 250 300 350

interval length

Figure 13. Relative branch misprediction
penalty as a function of interval length.

smaller for shorter interval lengths (see Figure 9), the rel-
ative penalty is higher when the absolute penalty is lower.
Note that even for fairly long intervals, the relative branch
misprediction penalty is still fairly large, e.g., an interval
length of 300 instructions has a 20% relative branch mispre-
diction penalty in a unit latency experiment, and a 31% rel-
ative branch misprediction latency in a non-unit latency ex-
periment, see Figure 13. Note also that the relative penalty
increases with increasing instruction execution latencies.
This is explained by the increasing drain time penalty with
an increasing instruction latency.

6 Classifying branch mispredictions

As mentioned before, the branch misprediction penalty
depends on the interaction between the branch mispredic-
tion and other miss events. We now classifiy branch mis-
predictions based on the preceding miss event’s type. We
can make the following classification: (i) a branch mispre-
diction follows a branch misprediction [br-br], (ii) a branch
misprediction follows an L1 I-cache miss [br-ill], (iii) a
branch misprediction follows an L2 I-cache miss [br-il2],
(iv) a branch misprediction follows an L2 D-cache miss [br-
d12]. The latter case can be further subdivided depending on
whether (v) the branch comes more than ROB-size instruc-
tions after the L2 D-cache miss [br-dl12, >W], or (vi) the
branch comes less than ROB-size instructions after the L2
D-cache miss [br-dI2, <W]. Once more, (vi) can be further
subdivided into (vii) the branch depends on the L2 D-cache
miss, and thus the penalties serialize [br-d12, <W, dep], and
(viii) the branch is independent on the L2 D-cache miss,
and thus the branch penalty is hidden under the L2 D-cache
miss [br-dl12, <W, indep].

Figure 14 shows fractions of branches according to this
classification. We observe that for the majority of all the
benchmarks, a branch misprediction is usually preceded by
a branch misprediction or an L1 I-cache miss. Very few
branch mispredictions are preceded by an L2 I-cache miss

Obr-br Obr-il1 Ebr-il2
@br-di2, >W Wbr-di2, <W, dep Wbr-di2, <W, indep

100%

90% 1 .—l = E
80% 1

70% A -
60% 1 -
50% 1
40%
30% 1 =
20% 1
10% -
0%

percentage
I

bzip2
crafty
eon
gap
gce
9zip
mcf
parser
perlbmk
twolf
vortex
vpr

Figure 14. Classifying branch mispredictions
based on their interaction with other miss
events.

because L2 I-cache misses are very rare. Three bench-
marks (vpr, gcc and mcf) have a significant fraction of
branch mispredictions that follow an L2 D-cache miss by
more than W instructions. All these interactions have the
same impact on the branch misprediction penalty—the in-
terval length is the only factor that affects the interaction,
i.e., the longer the interval length, the larger the branch mis-
prediction penalty. Branch mispredictions that follow an
L2 D-cache miss within ROB-size instructions result in a
different penalty. A branch misprediction that is indepen-
dent of the L2 D-cache miss is hidden under the L2 miss.
This seems to be the case for gap (7.5%), vpr (5.2%), twolf
(3.5%), etc. A branch misprediction that depends on an L2
D-cache miss sees a penalty that is nearly the same as the
front-end pipeline length. This is a substantial fraction of
the total number of branch mispredictions for a couple of
benchmarks: 56.9% (mcf), 11.9% (vpr), 8.3% (gcce), etc.

7 Impact of miss event burstiness on branch
misprediction penalty

One of the main conclusions from the previous sec-
tions is that the branch misprediction penalty is highly af-
fected by the length of the inter-miss intervals. In other
words, miss event burstiness affects the branch mispredic-
tion penalty. When talking about miss event burstiness, we
are not just refering to branch mispredictions, but to the
collective burstiness of miss events. Miss event burstiness
is affected by the branch predictor implementation and the
cache organization, i.e., different miss rates lead to different
miss event clustering, or even the same miss rate may lead to
different miss event clustering. This section studies in more
detail the interaction between miss event burstiness and the
branch misprediction penalty. We first focus on the impact
of the branch predictor implementation on the branch mis-
prediction penalty and then consider the impact of the cache

40 —&— bzip2 —B—crafty
35 | —A—eon —%—gap
> —X—gcc —6—gzip
g 30 1 —+—mcf —=— parser
2' —=—=— perlbmk —&— twolf
S 25
° —— vortex —A— \pr
o
o
S 201 G\@@
k]
€
< 151 %\0
[5]
f=
©
5 10
)
5 1
0% 5% 10% 15% 20% 25% 30% 35% 40%

branch misprediction rate

Figure 15. The branch misprediction penalty
as a function of the branch misprediction
rate.

organization on the branch misprediction penalty.
7.1 Effect of branch predictor implementation

Thus far, we have been simulating one particular branch
predictor, namely the one given in Table 2. However, the
branch misprediction penalty is not independent of the spe-
cific branches that are mispredicted. A branch predictor
with burstier miss behavior may suffer a different average
branch misprediction penalty than another branch predictor
(with the same misprediction rate) that shows less bursty
miss behavior. Consequently, there is a relationship be-
tween the average penalty and the branch predictor that is
used.

To quantify this effect, we measured the branch mispre-
diction penalty and the branch misprediction rate for four
different branch predictors—we used a collection of hybrid
(bimodal+gshare) and bimodal predictors each resulting in
a different misprediction rate. The results are shown in Fig-
ure 15 for the various benchmarks; the multiple dots per
benchmark show the four branch predictors. There are sev-
eral interesting observations to be made from this graph.
First, the branch misprediction penalty for a given program
generally increases with better predictors that decrease the
miss rate. This is to be expected as a poorer predictor (re-
sulting in a higher miss rate) will generally increase the
burstiness of the branch mispredictions. This is not always
the case, however; for example for twolf, there is the case
where the misprediction penalty is (slightly) higher for a
higher miss rate. Second, it is also interesting to observe
that different benchmarks with the same misprediction rate
can see different misprediction penalties. For example,
when looking at a misprediction rate around 5%, mcf seems
to have the highest misprediction penalty due to its poor L1
D-cache behavior, followed by vpr due to it low inherent
ILP, followed by gzip and parser due to their sensitivity to
the functional unit mix, etc. Similarly, around a mispredic-

35 —o— bzip2 —B—crafty
30 —A—eon —%—gap

—¥—gcc —o—gzip
25 —+—mof —=—parser
20 & —=—perlbmk —&— twolf
15 —A—wr

10 &

branch misprediction penalty

0% 2% 4% 6% 8% 10% 12% 14%
L1 l-cache miss rate

Figure 16. The branch misprediction penalty

as a function of the L1 I-cache miss rate.

tion rate 20% and 25%, twolf seems to suffer from a larger
branch misprediction rate than the other benchmarks. The
reason is its low ILP, see Figure 10.

7.2 Branch misprediction penalty versus cache
miss rates

Similar effects are to be expected when branch mispre-
dictions are interleaved with bursty behavior due to other
types of miss events. Figure 16 shows the relation between
the branch misprediction penalty as a function of the L1 I-
cache miss rate—we obtained similar results when varying
the L2 cache (not shown here because of space constraints).
The different miss rate numbers were obtained from dif-
ferent cache configurations. The L1 I-cache was varied
from 8KB, 16KB to 32KB. As expected, we observe that
the branch misprediction penalty decreases with increasing
cache miss rates. The more bursty miss behavior, the shorter
the inter-miss intervals and thus the shorter the branch mis-
prediction penalty.

8 Summary and conclusions

Branch mispredictions are an important factor in deter-
mining superscalar processor performance. In this paper
we studied the branch misprediction penalty, i.e., the num-
ber of cycles lost per mispredicted branch. We showed that
the branch misprediction penalty has two major contributors
other than the front-end pipeline length. First, the branch
misprediction penalty is dependent on the burstiness of the
miss events, i.e., the interval length or the number of in-
structions between two miss events. We conclude that the
branch misprediction penalty increases with increasing in-
terval length. As such, for the same number of branch mis-
predictions, programs with more non-branch miss events
tend to have lower branch misprediction penalties. Second,
the branch misprediction penalty is dependent on the av-
erage critical dependence path which is a function of the
inherent ILP of a program, the functional unit mix and the

number of short (L1) D-cache misses. Indeed, the branch
misprediction penalty negatively correlates with the amount
of ILP, i.e., the lower the ILP, the higher the branch mis-
prediction penalty. Similarly, for the same number of total
miss events, programs with a higher fraction of L1 D-cache
misses tend to have higher branch misprediction penalties.
In addition, by constructing a stacked penalty model we are
able to attribute fractions of the total penalty to specific pro-
gram characteristics on a per-benchmark basis. For exam-
ple, for vpr we observed that a major fraction of the total
branch misprediction penalty is due its low ILP whereas for
mcf a major fraction is due to its large number of L1 D-
cache misses.

Acknowledgements

Stijn Eyerman and Lieven Eeckhout are supported
by the Fund for Scientific Research—Flanders (Belgium)
(FWO—Vlaanderen). This research is also supported by
Ghent University, the HIPEAC Network of Excellence and
the European SCALA project No. 27648. James E. Smith is
supported by NSF grant CCR-0311361 and funds from the
Intel Corporation.

References

[1] T. Karkhanis and J. E. Smith. A day in the life of a data cache
miss. In Proceedings of the 2nd Annual Workshop on Memory
Performance Issues (WMPI 2002) held in conjunction with
ISCA-29, May 2002.

[2] T.S. Karkhanis and J. E. Smith. A first-order superscalar pro-
cessor model. In Proceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA-31), pages 338—
349, June 2004.

[3] P.Michaud, A. Seznec, and S. Jourdan. Exploring instruction-
fetch bandwidth requirement in wide-issue superscalar pro-
cessors. In Proceedings of the 1999 International Conference
on Parallel Architectures and Compilation Techniques (PACT-
1999), pages 2-10, Oct. 1999.

[4] P. Michaud, A. Seznec, and S. Jourdan. An exploration of
instruction fetch requirement in out-of-order superscalar pro-
cessors. Internal Journal on Parallel Programming, 29(1),
Feb. 2001.

[5] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
Proceedings of the Tenth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS-X), pages 45-57, Oct. 2002.

[6] T. M. Taha and D. S. Wills. An instruction throughput model
of superscalar processors. In Proceedings of the 14th IEEE
International Workshop on Rapid System Prototyping (RSP),
June 2003.

[71 D. W. Wall. Limits of instruction-level parallelism. In Pro-
ceedings of the fourth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS-1V), pages 176—188, April 1991.

